How wetland ecosystem services are underpinned by ecological functioning

Jos T.A. Verhoeven

Contents

- Ecosystem services: overview
- Ecosystem Functions and Ecosystem Services
- Why are wetlands champions?
- Functional Assessment for spatial decision-making
- Current debates from the ecosystem function side:
 - Provisioning services (debate: water provisioning)
 - Regulating services: (debate: does nutrient retention have side effects?)
 - Climate regulation (debate: C storage vs. methane emissions)
- Combined wetland services and livelihoods: constructed wetlands Florida; Inner Niger delta

Ecosystem Services vs. Ecosystem Functions

- Ecosystem Services: benefits (goods and services) that people obtain from the functioning of ecosystems
- Ecosystem Functions: interactions between ecosystem structure and processes that underpin the capacity to provide goods and services
- Millennium Ecosystem Assessment (2005)

Four groups of ecosystem services

Ecosystem services

Provisioning Cultural

Aesthetic Food

Freshwater

Wood Recreational

Fuel

Supporting

Nutrient cycling Soil formation

Primary production

Educational

Regulating

Climate

Floods

Water

Well-being

Social relations

Social cohesion

Mutual respect

Ability to help

Basic material

Livelihoods

Nutrition

Shelter

Health

Strength

Well-being

Recreational

Freedom of choice

Opportunity to

achieve individual

vales

Provisioning

1	Food	Presence of edible plants and animals
2	Water	Presence of water reservoirs
3	Fiber, Fuel & other raw materials	Presence of species or abiotic components with potential use for timber, fuel or raw material
4	Genetic Materials	Presence of species with (potentially) useful genetic material
5	Biochemical and medicinal resources	Presence of species or abiotic components with potentially useful chemicals and/or medicinal use
6	Ornamental species and/or resources	Presence of species or abiotic resources with ornamental use

Regulating

7	Air quality regulation:	Extraction of aerosols & chemicals from the atmosphere
8	Climate Regulation	Influence on local and global climate: soil carbon and methane
9	Natural Hazard mitigation	Role of wetlands in dampening extreme events
10	Water regulation	Role of wetlands in water infiltration and gradual release of water
11	Waste & nutrient treatment	Role of biota and abiotic processes in removal or breakdown of organic matter, nutrients and compounds
12	Erosion protection	Role of vegetation and biota in soil retention
13	Soil formation & regeneration	Role of natural processes in soil formation and regeneration
14	Pollination	Abundance and effectiveness of pollinators
15	Biological Regulation	Control of pest populations through trophic relations

Habitat or supporting

16	Nursery habitat	Importance of ecosystems to provide breeding, feeding or resting habitat for transient species
17	Gene pool protection	Maintenance of a given ecological balance and evolutionary processes

Cultural & amenity

18	Aesthetics	Aesthetic quality of the landscape, based on e.g. structural diversity, "greenness", tranquility
19	Recreation, ecotourism	Landscape-features Attractive wildlife
20	Inspiration for culture, art and design	Landscape features or species with inspirational value to human arts, etc.
21	Cultural heritage and identity:	Culturally important landscape features or species
22	Spiritual & religious inspiration	Landscape features or species with spiritual & religious value
23	Education & science	Features with special educational and scientific value/interest

Definition of wetlands

- Areas with water level near soil surface (at least 6 months per year)
- Sediments with indications for anaerobic conditions (rusty brown and en black-grey mottling)
- Vegetation consists of plants with special adaptations: submerged life form or flood tolerance

Wetlands of the world

Wetland types and hydrology

Why are wetlands champions?

- Wetlands have water: abundant life!
- Many wetlands have a catchment

 rich in nutrients
- Combination of water and nutrients → high productivity
- Fish and crustacean production! Waterfow!!
- Wetlands have water-logged soils anaerobic conditions
- Slow decomposition and organic matter storage
- Complex biogeochemistry resulting in denitrification and methane emission

Wetland ecosystem services

• Provisioning:

- Biomass/ food production
- Enhancement of fisheries (riverine, coastal)
- Water?

Regulating:

- Flood detention and storm protection
- Nutrient/sediment retention: better water quality
- Carbon storage vs. GHG emissions (climate)

• Cultural:

- Heritage and use by livelihoods
- Biodiversity, esthetics and ecotourism

Combinations?

Underpinning wetland services

- Goods and services are produced through ecosystem functioning
- Underpinning requires very good knowledge of wetland ecology
- Complex interactions among plants, animals, microbes and the environment
- Hydrology, hydrogeochemistry, energy flow, food web, carbon and nutrient cycling
- Use of expert knowledge to use assessment systems based on indicators

Methodology to estimate wetland functions/services: FAPs

Functional assessment of wetlands Edited by Edward Malitry WP

Maltby et al. 2009

Functional Assessment Procedures

- Wetland services brought about by functions
- Functions are based on processes
- Processes: environmental variables and biota
- Assessment of functions with field indicators:
- Desk study
- 1-2 days in the field
- Questionnaires
- Calculations through decision tree

FAEWE Protowet Evaluwet

Multicriteria Analysis based on FAPs

Provisioning and food chain support

Provisioning services: examples

 Spawning and nursery habitat for fish: saltmarsh & mangrove

 Reeds for thatching, paper or woodwind instruments

Waterfowl: ducks, geese

Are wetlands provisioning water?

- Confusion over the relation between wetlands and water
- "Wetlands have a water-provisioning function"
- In reality, wetlands lose water through evaporation or groundwater seepage
- Wetlands need much water
- Withdrawal of water from rivers is detrimental for wetlands
- Current paradigm in water resource management:
 "Blue" and "Green" water

The Blue and Green water catchment perspective

Water and agriculture

Rain-dependent Irrigation-dependent

Need for 50% increased crop production in 2035 will create a world water crisis

- Agriculture and wetland ecosystems are dependent on water
- Irrigation is using Blue water for agriculture
- This Blue water is extracted from rivers at the expense of natural wetlands

Protecting wetlands' water needs

- 'Environmental flow' approach in river basins helps protecting the mere existence of wetlands
- Loss of wetland ecosystem services may outnumber short-term economic benefits
- Integrated water resources management needed

Irrigation or flooding? rice fields versus floodplains

Regulating services: biogeochemistry

Element cycles in wetlands

- Wetlands: surplus of water, shortage of oxygen in the soil
- Plants and animals need special adaptations
- Drastic consequences for biogeochemistry: anaerobic decay processes
- Electron acceptors other than oxygen: nitrate, iron, manganese, sulphate, carbon dioxide

Redox-couples show a sequence:

Oxidation-Reduction or Redox Potential - Millivolts
(Corrected to pH 7)

Decomposition rate declines in anoxic conditions

Key wetland biogeochemical processes

- In anaerobic wetland soils:
 - Nitrate is denitrified towards N₂O and N₂[†]
 - Sulphate is reduced to sulfide
 - Methane is produced
 - Carbon is sequestered because of incomplete decomposition
 - \rightarrow Water quality enhancement (N₂O?)
 - → Climate regulation (carbon? methane?; N₂O?)

Nutrient loading of wetlands

- Increase of primary productivity
- Shifts in species composition of algae, aquatic plants and fauna

- Shifts from one stable state to another (e.g. shallow lakes)
- Loss of functional integrity, dramatic fish kills and nutrient flush
- (1) Riparian zones; (2) Constructed wetlands

Nutrient flows in agricultural landscapes

Nitrate concentrations in riparian zones

Denitrification in upper 10 cm

STP Everstekoog and wetland

Water quality and hydraulic retention time

The Water Harmonica

- Water from sewage treatment plant was polished effectively:
- 99.9% removal of E. coli
- 25% additional N removal
- No additional P removal
- Particles in water changed from sewage sludge to freshwater biota (phytoplankton and zooplankton)

Loading rates in wetlands: literature data

Catchment	Location	Wetland type	Origin	N load g m ⁻² y ⁻¹	P load g m ⁻² y ⁻¹
Liuchahe	PR China	Multipond	Constructed	>50	>5
Regge, Twente	Netherlands	Riparian	Natural	20 – 114	
Everglades	USA	Marsh	Natural		0.2 – 4
Mississippi	USA	Forested	Natural	1.9 – 3.9	0.02 – 0.09
Various	USA	Riparian	Natural	2 – 15.5	
Treatment wetlands in USA and Europe			Constructed	50 – 900	10 – 200
Critical load		Biodiversity		4.0	1.0
Maximum load		Integrity		100	6

N and P loading thresholds

- There are two types of 'threshold relationships' for N and P loading
- For natural, sensitive wetlands (loss of biodiversity):
 - critical N load of 4 g N m $^{-2}$ y $^{-1}$ (Bobbink et al. 2003)
 - critical P load of 1 g P m ⁻² y⁻¹
- For all (including constructed) wetlands (loss of integrity):
 - maximum N load 100 g N m⁻² y⁻¹
 - Maximum P load 6 g P m ⁻² y⁻¹

The Mississippi River Basin (MRB)

Scaling up: catchments 0.5 0.4 0.3 **NZO/DNI** 0.2 0.1 increasing stream order Hefting et al. 2013 Ratio N₂O: N₂ quite high in headwaters

N₂O emissions in a catchment context

- N₂O emissions are most prominent in the upper parts of the catchment
- Riparian wetlands along lower order streams have high emissions
- Wetlands along higher order streams have low or zero emissions
- pH is the most important regulating factor

Global Denitrification

Global Denitrification

Global N budget

Global denitrification

- Denitrification is a world-wide ecosystem service preventing major europhication problems
- Particularly important in areas with intensive agriculture
- Wetlands as well as agricultural soils play a major role
- Riparian wetlands as well as pond depressions are very active
- Advantages outweigh side-effects (N₂O)

Are wetlands cooling or warming the climate?

- Wetlands sequester carbon dioxide: cooling
- Wetlands emit methane: warming
- Wetlands emit nitrous oxide: warming
- Balance:
 - How much CO₂ sequestered per CH₄ emitted?
 - Radiative forcing per molecule
 - Life time of molecule in the atmosphere
 - Scientific debate, including IPCC

Global Warming Potential GWP

		GWP per time horizon		
GWP (2013 IPCC AR5)	Lifetime (years)	20 years	100 years	
Carbon dioxide	∞	1	1	
Methane	12.4	86	34	
Nitrous oxide	121.0	268	298	

Wetlands are eventually cooling

- Instantaneous carbon sequestration is lower than methane emission: warming
- Carbon dioxide remains out of the cycle for a very long time, methane breaks down in the atmosphere
 Switching point
- Eventually, wetlands have a cooling effect

Champions: peatlands! Leave them intact!

Multiple wetland services: 2 examples

Constructed wetland for wastewater polishing

Inner delta of the Niger, Mali: Floating rice, grazing, fishing

Fig. 2 - Ecosystem services in the Inner Niger Delta.

Lobau floodplain, Danube →

Fig. 4 - Ecosystem services in the Lobau.

WETwin project (2013)

Wetland ecosystem services: some take-home messages

- Wetlands do provide many services because they have (1) water (2) nutrients (3) anoxic soils
- Wetlands do NOT have a water-provisioning function; they compete for water with agriculture
- Wetlands (riparian, constructed) have a robust nitrogen retention function with little side effects
- As long as they are not loaded beyond critical limits
- Wetlands have a cooling effect on climate, if they are long-term carbon accumulators
- If not, they have a warming effect

Wetland ecosystem services: some take-home messages

- Wetlands are often particularly valuable because of multiple ecosystem services
- This is true for developed areas (retention + biodiversity + ecotourism)
- Even more so in developing areas (fisheries + wet agriculture + retention + biodiversity + ecotourism)
- Economic valuation will help recognizing services and protecting wetlands

